ANSWERS

1
$$3y + x - 3 = 0$$

$$y + 2x - 5 = 0$$

$$y = 2$$

4
$$m_{AB}=m_{CD}=-2$$
, hence $\overline{AB}||\overline{CD}$, $m_{AD}=m_{BC}=\frac{1}{2}$, hence $\overline{AD}||\overline{BC}$, $m_{AB}=-\frac{1}{m_{AD}}$, hence $\overline{AB}\perp\overline{AD}$, $m_{BC}=-\frac{1}{m_{DC}}$, hence $\overline{BC}\perp\overline{CD}$ $\overline{AB}=\overline{CD}=5\sqrt{5}$, $\overline{AD}=\overline{BC}=2\sqrt{5}$

5 The design is not compliant with the limitation, because the gradient of the belt is 0.404 or, viceversa, a gradient of value 0.4 would imply an angle equals to 21.8°

6
$$\theta_x = 36.87^{\circ}$$

$$\theta_{\rm v} = 53.13^{\circ}$$

$$7 \quad x^2 + y^2 - 10x + 6y - 2 = 0$$

8 a
$$C(5, -7), r = 5\sqrt{5}$$

b Hint: substitute the coordinates of the point into the equation of the circle

9
$$C(-3, 1), r = 2$$

10 a
$$C(2, 2)$$

(

b
$$x^2 + y^2 - 4x - 4y - 5 = 0$$

$$c 2y + 3x = 10$$

11 Pupil's own answer

12 a c = -1 and c = 7, the line touches the circle.

b -1 < c < 7, the line intersects the circle at two points

c c < -1 and c > 7, the line does not meet the circle

13 a
$$u_{n+1} = 0.7u_n + 25 \text{mg/m}^3$$

b Yes, the current fertiliser treatment will maintain the required level of potassium, because $L = 83\frac{1}{3}$ mg/m³

14 a
$$u_3 = 9460$$

b
$$L = 60000$$

15
$$x = \frac{6}{4+\pi}$$

16
$$A = \frac{45}{4}$$

17
$$A = \frac{4}{3}$$

18
$$A = 9$$